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Challenges for Computational Scientists
• Rapidly evolving platforms and applications 

— architecture
– rapidly changing multicore microprocessor designs
– increasing architectural diversity

 CPU, GPU, APU, manycore (e.g., Xeon Phi)
– increasing scale of parallel systems

— applications
– augment computational capabilities 

• Computational scientist needs
— adapt to changes in emerging architectures

– adding threading and/or offloading to accelerators
— improve scalability within and across nodes
— assess weaknesses in algorithms and their implementations
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Performance tools can play an important role as a guide
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Performance Analysis Challenges
• Complex node architectures are hard to use efficiently

— multi-level parallelism: multiple cores, ILP, SIMD, accelerators
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

• Complex applications present challenges
— measurement and analysis 
— understanding behaviors and tuning performance

• Supercomputer platforms compound the complexity
— unique hardware & microkernel-based operating systems 
— multifaceted performance concerns

– computation
– data movement
– communication
– I/O 



4

What Users Want
• Easy-to-use multi-platform, programming model independent tools

• Accurate measurement of complex parallel codes
— large, multi-lingual programs
— (heterogeneous) parallelism within and across nodes
— optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

– dynamic binaries on clusters; static binaries on supercomputers
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code for actionable results
– support analysis at the desired level

 intuitive enough for application scientists and engineers
 detailed enough for library developers and compiler writers

• Scalable to petascale and beyond
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Rice University’s HPCToolkit
• Employs binary-level measurement and analysis

— observe executions of optimized code 
— support multi-lingual codes with external binary-only libraries

• Uses sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collects and correlates multiple derived performance metrics
— diagnosis typically requires more than one species of metric

• Associates metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Supports top-down performance analysis
— natural approach that minimizes burden on developers
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead
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• For dynamically-linked executables, e.g., Linux
— compile and link as you usually do

• For statically-linked executables, e.g., Blue Gene/Q
— add monitoring by using hpclink as prefix to your link line
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• Measure execution unobtrusively
— launch optimized application binaries

– dynamically-linked applications: launch with hpcrun
 e.g., mpirun -np 8192 hpcrun -t -e WALLCLOCK@5000 flash3 ...

– statically-linked applications: control with environment variables
— collect statistical call path profiles of events of interest
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Measure and attribute costs in context
    sample timer or hardware counter overflows
    gather calling context using stack unwinding

Call Path Profiling
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Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency... 
...not call frequency

Calling context tree
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• Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source
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• Combine multiple profiles
— multiple threads; multiple processes; multiple executions

• Correlate metrics to static & dynamic program structure
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• Presentation
— explore performance data from multiple perspectives

– rank order by metrics to focus on what’s important
– compute derived metrics to help gain insight

 e.g. scalability losses, waste, CPI, bandwidth
— graph thread-level metrics for contexts
— explore evolution of behavior over time
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Analyzing Chombo@1024 cores with hpcviewer 
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costs for
• inlined procedures
• loops
• function calls in full context

source pane

navigation pane metric pane

view control
metric display
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Principal Views
• Calling context tree view - “top-down” (down the call chain)

— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs
— example: quantify initialization, solve, post-processing

• Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places
— example: see where PGAS put traffic is originating

• Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure
— example: assess the overall memory hierarchy performance 

within a critical procedure
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead
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The Problem of Scaling
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Wanted: Scalability Analysis

• Isolate scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem
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Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait
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Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Put your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism and/or different problem size
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code 
— explore the annotated call tree interactively
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Pinpointing and Quantifying Scalability Bottlenecks
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• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be 

combined to create many different applications
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Scalability Analysis Demo: FLASH3

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code:   University of Chicago FLASH3
Simulation:  white dwarf detonation
Platform:  Blue Gene/P 
Experiment:  8192 vs. 256 processors
Scaling type:  weak



Scalability Analysis of Flash3 (Demo)
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Improved Flash Scaling of AMR Setup

24Graph courtesy of Anshu Dubey, U Chicago



Scaling on Multicore Processors
• Compare performance 

— single vs. multiple processes on a multicore system

• Strategy
— differential performance analysis

– subtract the calling context trees as before, unit coefficient for each

25



S3D: Multicore Losses at the Procedure Level
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subroutine rhsf 
accounts for 13.0% of 
the multicore scaling 
loss in the execution

Execution time 
increases 1.65x in 
subroutine rhsf 



S3D: Multicore Losses at the Loop Level
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Execution time 
increases 2.8x in the 
loop that scales worst 

loop contributes 6.9% 
of the scaling loss for 
the whole execution
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead



• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution
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Understanding Temporal Behavior

Time

Processes

Call 
stack
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead



MPBS @ 960 cores, radix sort
Two views of load imbalance since not on a 2k cores
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead



Blame Shifting
• Problem: in many circumstances sampling measures 

symptoms of performance losses rather than causes
— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication
— idle GPU waiting for work

• Approach: shift blame for losses from victims to perpetrators
— blame code executing while other threads are idle
— blame code executed by lock holder when thread(s) are waiting
— blame processes that arrive late to collectives 
— shift blame between CPU and GPU for hybrid code
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Directed Blame Shifting

• Example: 
— threads waiting at a lock are the symptom
— the cause is the lock holder

• Approach: blame lock waiting on lock holder
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Example: Directed Blame Shifting for Locks
 Blame a lock holder

 for delaying waiting 
        threads

• Charge all samples 
that threads receive 
while awaiting a lock
to the lock itself

• When releasing 
a lock, accept 
blame at
the lock

35

all of 
the 
waiting 
occurs 
here
(symptom)

almost all blame 
for the waiting is
attributed here
(cause)



work

Undirected Blame Shifting
• Example: 

— threads idling waiting for work are the symptom
— the cause is insufficiently parallel work being executed by others

• Approach: each working threads proportionally blames itself for instantaneous
idling by others when it is sampled
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counters hold the 
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working thread 
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Performance Expectations for Hybrid Code with Blame Shifting
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Milind Chabbi, Karthik Murthy, Michael Fagan, and John Mellor-Crummey. 
Effective Performance Tools for CPU/GPU Systems. SC13. To appear.



GPU Successes with HPCToolkit
• LAMMPS: identified hardware problem with Keeneland system

— improperly seated GPUs were observed to have lower data copy 
bandwidth

• LLNL’s LULESH: identified that dynamic memory allocation 
using cudaMalloc and cudaFree accounted for 90% of the 
idleness of the GPU
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• Goal: associate memory hierarchy performance losses with data

• Approach
— intercept allocations to associate with their data ranges
— measure latency with various PMU capabilities

• instruction-based sampling (AMD Opteron)
• precise event-based sampling + load latency facility (Intel)
• marked instructions (IBM Power)

— present quantitative results using hpcviewer
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Data Centric Analysis

Xu Liu and John Mellor-Crummey. A Data-centric 
Profiler for Parallel Programs. SC13. To appear.



Data Centric Analysis of S3D
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41.2% of memory hierarchy 
latency related to yspecies 
array

yspecies latency for this 
loop is 14.5% of total 
latency in program
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Outline
• Overview of Rice’s HPCToolkit

• Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

• Understanding temporal behavior

• Assessing process variability

• Understanding threading, GPU, and memory hierarchy
— blame shifting 
— attributing memory hierarchy costs to data

• Summary and challenges ahead



Summary
• Sampling provides low overhead measurement

• Call path profiling + binary analysis + blame shifting = insight
— scalability bottlenecks
— where insufficient parallelism lurks
— sources of lock contention
— load imbalance
— temporal dynamics
— bottlenecks in hybrid code
— problematic data structures
— hardware counters for detailed diagnosis

• Other capabilities
— attribute memory leaks back to their full calling context
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HPCToolkit Status
• Operational today on

— 64- and 32-bit x86 systems running Linux (including Cray XT/E/K)
— IBM Blue Gene
— IBM Power7 systems running Linux

• Available as open source software at http://hpctoolkit.org

• Emerging capabilities
— NVIDIA GPU

• measurement and reporting using GPU hardware counters
— data centric analysis
— OpenMP analysis using OMPT
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OMPT: Emerging Monitoring for OpenMP
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main→fn.0→fn.1→fn.2

...

Problem: calling context 
for parallel regions and 
tasks is not readily 
available to tools



Key OMPT Design Objectives
• Enable tools to gather information and associate costs with 

application source and runtime system
— provide interface for low-overhead sampling-based tools
— enable tools to reconstruct application-level profiles

– alternative to implementation-level view
— associate activity of a thread at any point in time with a state

– enable performance tools to monitor behavior

• Negligible overhead if OMPT interface is not in use

• Define support for trace-based performance tools
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Integrated View of MPI+OpenMP with OMPT
LLNL’s luleshMPI_OMP (8 MPI x 3 OMP), 30, REALTIME@1000
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source view

thread view

metric view



Tool Challenges Ahead
• Address challenges of emerging systems

— heterogeneity (e.g., on-chip; host + accelerator)
— growth in thread counts: MIC supports 200+ threads
— increasing scale of systems (e.g., Sequoia)

• Identify causes rather than symptoms (blame shifting)

• Measure and analyze all facets of application performance
— CPU, accelerator, data movement, synchronization, I/O, power
— interactions: HW, other jobs, system software

• Analyze asynchronous activities

• Support dynamic adaptation of software
— measurements and decision algorithms to drive adaptation
— assessment of adaptation policies

• Provide analysis to support higher level insight, diagnosis, 
and guidance

47



HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior 
over Time

Assess Imbalance 
and Variability 

Associate Costs with DataShift Blame from 
Symptoms to Causes 

Pinpoint & Quantify 
Scaling Bottlenecks

hpctoolkit.org


